
Siddhartha Jain, Seyoon Ragavan

Breaking and Making Quantum Speedups Workshop

Tutorial

What is quantum computing?
A primer on BQP

What is quantum computing?
A primer on BQP

Start with a randomized algorithm (BPP) and replace the probabilities by complex “amplitudes”
with norm 1.ℓ2

What is quantum computing?
A primer on BQP

Start with a randomized algorithm (BPP) and replace the probabilities by complex “amplitudes”
with norm 1.ℓ2

A qubit is where and .α |0⟩ + β |1⟩ |0⟩ = (1
0), |1⟩ = (0

1) |α |2 + |β |2 = 1

What is quantum computing?
A primer on BQP

Start with a randomized algorithm (BPP) and replace the probabilities by complex “amplitudes”
with norm 1.ℓ2

A qubit is where and .α |0⟩ + β |1⟩ |0⟩ = (1
0), |1⟩ = (0

1) |α |2 + |β |2 = 1

Entanglement:

What is quantum computing?
A primer on BQP

Start with a randomized algorithm (BPP) and replace the probabilities by complex “amplitudes”
with norm 1.ℓ2

A qubit is where and .α |0⟩ + β |1⟩ |0⟩ = (1
0), |1⟩ = (0

1) |α |2 + |β |2 = 1

Entanglement:

 cannot be written as a tensor product (concatenation) of two qubits.
|00⟩ + |11⟩

2
≈

What is quantum computing?
A primer on BQP

What is quantum computing?
A primer on BQP

There are two main operations in quantum computing.

What is quantum computing?
A primer on BQP

There are two main operations in quantum computing.

Measurement:

What is quantum computing?
A primer on BQP

There are two main operations in quantum computing.

Measurement:

On measuring state we see with probability |ψ⟩ = ∑
x∈0,1n

ax |x⟩ x |ax |2

What is quantum computing?
A primer on BQP

There are two main operations in quantum computing.

Measurement:

On measuring state we see with probability |ψ⟩ = ∑
x∈0,1n

ax |x⟩ x |ax |2

Unitary evolution:

What is quantum computing?
A primer on BQP

There are two main operations in quantum computing.

Measurement:

On measuring state we see with probability |ψ⟩ = ∑
x∈0,1n

ax |x⟩ x |ax |2

Unitary evolution:

Map where , norm-preserving & invertible linear transform|ψ⟩ → U |ψ⟩ UU† = U†U = I

What is quantum computing?
A primer on BQP

What is quantum computing?
A primer on BQP

Our measure of complexity is (uniform) circuit size after picking your favorite gate set (does
not matter due to Solovay-Kitaev theorem), mine is Toffoli () + Hadamard ().T H

What is quantum computing?
A primer on BQP

Our measure of complexity is (uniform) circuit size after picking your favorite gate set (does
not matter due to Solovay-Kitaev theorem), mine is Toffoli () + Hadamard ().T H

 thus

,

H =
1

2 (1 1
1 −1)

H|0⟩ =
1

2
(|0⟩ + |1⟩) H|1⟩ =

1

2
(|0⟩ − |1⟩)

H
|0⟩ + |1⟩

2
= |0⟩

What is quantum computing?
A primer on BQP

Our measure of complexity is (uniform) circuit size after picking your favorite gate set (does
not matter due to Solovay-Kitaev theorem), mine is Toffoli () + Hadamard ().T H

 thus

,

H =
1

2 (1 1
1 −1)

H|0⟩ =
1

2
(|0⟩ + |1⟩) H|1⟩ =

1

2
(|0⟩ − |1⟩)

H
|0⟩ + |1⟩

2
= |0⟩

T |x, y, z⟩ = |x, y, z ⊕ (x ∧ y)⟩

What is quantum computing?
A primer on BQP

What is quantum computing?
A primer on BQP

What can we do with this? A lot. Most famously,

What is quantum computing?
A primer on BQP

What can we do with this? A lot. Most famously,

[Shor94] Factoring is in BQP.

Besides that, we have expected for a long time that it is useful for

What is quantum computing?
A primer on BQP

What can we do with this? A lot. Most famously,

[Shor94] Factoring is in BQP.

Besides that, we have expected for a long time that it is useful for

• Simulating quantum physics and chemistry (exponential speedups)

What is quantum computing?
A primer on BQP

What can we do with this? A lot. Most famously,

[Shor94] Factoring is in BQP.

Besides that, we have expected for a long time that it is useful for

• Simulating quantum physics and chemistry (exponential speedups)

• Many search problems (quadratic speedups)

What is quantum computing?
A primer on BQP

What can we do with this? A lot. Most famously,

[Shor94] Factoring is in BQP.

Besides that, we have expected for a long time that it is useful for

• Simulating quantum physics and chemistry (exponential speedups)

• Many search problems (quadratic speedups)

Where is quantum computing?
Answer: it’s an exciting time

Where is quantum computing?
Answer: it’s an exciting time

In the lab

Where is quantum computing?
Answer: it’s an exciting time

In the lab

• Google’s Willow chip demonstrated an error rate below the surface code threshold.

Where is quantum computing?
Answer: it’s an exciting time

In the lab

• Google’s Willow chip demonstrated an error rate below the surface code threshold.

Where is quantum computing?
Answer: it’s an exciting time

In the lab

• Google’s Willow chip demonstrated an error rate below the surface code threshold.

Where is quantum computing?
Answer: it’s an exciting time

In the lab

• Google’s Willow chip demonstrated an error rate below the surface code threshold.

• Quantum computers from IBM, Quantinuum, QuEra, PsiQuantum & more already
performing experiments and poised to scale up.

Where is quantum computing?
Answer: it’s an exciting time

In the lab

• Google’s Willow chip demonstrated an error rate below the surface code threshold.

• Quantum computers from IBM, Quantinuum, QuEra, PsiQuantum & more already
performing experiments and poised to scale up.

Nobel Prize in Physics this year awarded to John Clarke, Michel H. Devoret
and John M. Martinis for "for the discovery of macroscopic quantum
mechanical tunnelling and energy quantisation in an electric circuit.”

Where is quantum computing?
Answer: it’s an exciting time

Where is quantum computing?
Answer: it’s an exciting time

In theory

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

• Quartic quantum speedups for planted inference

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

• Quartic quantum speedups for planted inference

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

• Quartic quantum speedups for planted inference

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

• Quartic quantum speedups for planted inference

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

• Quartic quantum speedups for planted inference

Where is quantum computing?
Answer: it’s an exciting time

In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for
approximate optimization

• Quartic quantum speedups for planted inference

Where is quantum computing?
Answer: it’s an exciting time

With new caveats?

Plan for today

Plan for today

Plan for today

You are here

Plan for today

You are here

DQI (Robin), planted inference (William)

Plan for today

You are here

DQI (Robin), planted inference (William)

Verifiable quantum advantage (Soumik),

Plan for today

You are here

DQI (Robin), planted inference (William)

Verifiable quantum advantage (Soumik),

Quantum MCMC (Anthony)

Plan for today

You are here

DQI (Robin), planted inference (William)

Verifiable quantum advantage (Soumik),

Quantum MCMC (Anthony)

Characters of (Vojtěch)Sn

Exponential Speedups from the
Quantum Fourier Transform

Simon; Shor

1994

Act I: period finding

Exponential Speedups from the
Quantum Fourier Transform

Simon; Shor Regev’s
reduction

1994 2005

Act I: period finding Act II: building cryptography
on the hardness of lattice
problems

Exponential Speedups from the
Quantum Fourier Transform

Simon; Shor Regev’s
reduction

Chen-Liu-
Zhandry;
Yamakawa-
Zhandry

1994 2005 2022 2024

Act I: period finding Act II: building cryptography
on the hardness of lattice
problems

Act III: new quantum
algorithms from Regev’s
reduction

Jordan, Shutty et al;
Chailloux-Tillich

Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩

Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩

Quantum Fourier transform: extracts information about a quantum state’s periodicity

Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩

Quantum Fourier transform: extracts information about a quantum state’s periodicity

• Classical FT: explicitly stores values of , computes in timeN f ̂f O(N log N)

Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩

Quantum Fourier transform: extracts information about a quantum state’s periodicity

• Classical FT: explicitly stores values of , computes in timeN f ̂f O(N log N)

• Quantum FT: implicitly stores in a state on qubits, implicitly computes in timef log N ̂f O(log2 N)

Exponential Speedups from the
Quantum Fourier Transform

Simon; Shor Regev’s
reduction

Chen-Liu-
Zhandry;
Yamakawa-
Zhandry

1994 2005 2022 2024

Act I: period finding Act II: building cryptogra
aa

Act III: new qua
a

Jordan, Shutty et al;
Chailloux-Tillich

Period Finding

Period Finding
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

Period Finding
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

Period Finding
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

1.Prepare the superposition
𝗉𝗈𝗅𝗒(T)

∑
x=1

|x⟩ | f(x)⟩

Period Finding
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

1.Prepare the superposition
𝗉𝗈𝗅𝗒(T)

∑
x=1

|x⟩ | f(x)⟩

2.Measure (“condition on”) the second register → signal

has period

|x0⟩ + |x0 + T⟩ + |x0 + 2T⟩ + …
T

Period Finding
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

1.Prepare the superposition
𝗉𝗈𝗅𝗒(T)

∑
x=1

|x⟩ | f(x)⟩

2.Measure (“condition on”) the second register → signal

has period

|x0⟩ + |x0 + T⟩ + |x0 + 2T⟩ + …
T

3.QFT and measure the state → recover T

From Period Finding to Factoring

From Period Finding to Factoring
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

• Corollary (Shor): factoring (and discrete logarithm) is in BQP

From Period Finding to Factoring
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

• Corollary (Shor): factoring (and discrete logarithm) is in BQP

1.To factor : consider for randomly chosen N f(x) = a2x mod N a

From Period Finding to Factoring
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

• Corollary (Shor): factoring (and discrete logarithm) is in BQP

1.To factor : consider for randomly chosen N f(x) = a2x mod N a

2.Period is such that T a2T ≡ (aT)2 ≡ 1 (mod N) ⇒ N ∣ (aT − 1)(aT + 1)

From Period Finding to Factoring
• Strictly periodic function with unknown but exponentially large period f : ℤ → ℤ T

• f(x) = f(y) ⇔ x ≡ y (mod T)

• Theorem: can quantumly recover in timeT 𝗉𝗈𝗅𝗒(log T)

• Corollary (Shor): factoring (and discrete logarithm) is in BQP

1.To factor : consider for randomly chosen N f(x) = a2x mod N a

2.Period is such that T a2T ≡ (aT)2 ≡ 1 (mod N) ⇒ N ∣ (aT − 1)(aT + 1)

3.With good probability: is a nontrivial factor of gcd(aT − 1,N) N

From Period Finding to Factoring
• Strictly periodic function with unknown but exponentiaa

•

• Theorem: caa

• Corollaaaa

1.To fa a

2.Period is such tha

3.With good proba aaa

f : ℤ → ℤ T

f(x) = f(y) ⇔ x ≡ y (mod T)

T 𝗉𝗈𝗅𝗒

N f(x) = a2x mod N a

T a2T ≡ (aT)2 ≡ 1 (mod N) ⇒ N ∣ (aT − 1)(aT + 1)

gcd(aT − 1,N) N

Implication: large-scale quantum computers would break essentially all 20th century
public-key encryption (RSA, Diffie-Hellman)!

Cryptographic goal: find public-key encryption that is secure against quantum attackers…

Exponential Speedups from the
Quantum Fourier Transform

Simon; Shor Regev’s
reduction

Chen-Liu-
Zhandry;
Yamakawa-
Zhandry

1994 2005 2022 2024

Act I: period f Act II: building cryptography
on the hardness of lattice
problems

Act III: new qua
a

Jordan, Shutty et al;
Chailloux-Tillich

Fourier Convolution Theorem

FT

Fourier Convolution Theorem

FT

Fourier Convolution Theorem

FT

Fourier Convolution Theorem

FT

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

• Let and for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

• Let and for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑

x∈ℤm
q

f(x)g(x) |x⟩

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

• Let and for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑

x∈ℤm
q

f(x)g(x) |x⟩

• QFT → suffices to construct the convolution of the Fourier
transforms

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

• Let and for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑

x∈ℤm
q

f(x)g(x) |x⟩

• QFT → suffices to construct the convolution of the Fourier
transforms

• ̂f(z) ∝ 𝕀[z ∈ 𝒞⊥]

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

• Let and for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑

x∈ℤm
q

f(x)g(x) |x⟩

• QFT → suffices to construct the convolution of the Fourier
transforms

• ̂f(z) ∝ 𝕀[z ∈ 𝒞⊥]

• ̂g(z) ∝ exp(−πR2∥z∥2/q2)

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

•
Suffices to prepare ∑

c∈𝒞⊥
∑

e∈ℤm
q

exp(−πR2∥e∥2/q2) |c + e⟩

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

•
Suffices to prepare ∑

c∈𝒞⊥
∑

e∈ℤm
q

exp(−πR2∥e∥2/q2) |c + e⟩

• Algorithm:

1.Separately prepare and ∑
c∈𝒞⊥

|c⟩ ∑
e∈ℤm

q

exp(−πR2∥e∥2/q2) |e⟩

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

•
Suffices to prepare ∑

c∈𝒞⊥
∑

e∈ℤm
q

exp(−πR2∥e∥2/q2) |c + e⟩

• Algorithm:

1.Separately prepare and ∑
c∈𝒞⊥

|c⟩ ∑
e∈ℤm

q

exp(−πR2∥e∥2/q2) |e⟩

2.Entangle them by computing : c + e ∑
c∈𝒞⊥

∑
e∈ℤm

q

exp(−πR2∥e∥2/q2) |c⟩ |e⟩ |c + e⟩

Regev’s Reduction
Goal: output a codeword from linear with all entries close to 0𝒞 ⊂ ℤm

q

•
Suffices to prepare ∑

c∈𝒞⊥
∑

e∈ℤm
q

exp(−πR2∥e∥2/q2) |c + e⟩

• Algorithm:

1.Separately prepare and ∑
c∈𝒞⊥

|c⟩ ∑
e∈ℤm

q

exp(−πR2∥e∥2/q2) |e⟩

2.Entangle them by computing : c + e ∑
c∈𝒞⊥

∑
e∈ℤm

q

exp(−πR2∥e∥2/q2) |c⟩ |e⟩ |c + e⟩

3.We now need a decoder to recover from to “erase” these registersc, e c + e

Regev’s Reduction: Summary
Cryptography assuming the hardness of lattice problems

Regev’s Reduction: Summary
Cryptography assuming the hardness of lattice problems

• Regev’s encryption scheme is secure, unless there exists an algorithm for decoding
 for and of low normc + e ↦ c, e c ∈ 𝒞⊥ e ℓ2

Regev’s Reduction: Summary
Cryptography assuming the hardness of lattice problems

• Regev’s encryption scheme is secure, unless there exists an algorithm for decoding
 for and of low normc + e ↦ c, e c ∈ 𝒞⊥ e ℓ2

• Given such an algorithm, we could combine it with the QFT to output a codeword in of
low norm

𝒞
ℓ2

Regev’s Reduction: Summary
Cryptography assuming the hardness of lattice problems

• Regev’s encryption scheme is secure, unless there exists an algorithm for decoding
 for and of low normc + e ↦ c, e c ∈ 𝒞⊥ e ℓ2

• Given such an algorithm, we could combine it with the QFT to output a codeword in of
low norm

𝒞
ℓ2

• Classical reductions → this would allow us to solve lattice problems (e.g. approximate
shortest vector)

Regev’s Reduction: Summary
Cryptography assuming the hardness of lattice problems

• Regev’s encryption scheme is secure, unless there exists an algorithm for decoding
 for and of low normc + e ↦ c, e c ∈ 𝒞⊥ e ℓ2

• Given such an algorithm, we could combine it with the QFT to output a codeword in of
low norm

𝒞
ℓ2

• Classical reductions → this would allow us to solve lattice problems (e.g. approximate
shortest vector)

Running this backwards: if lattice problems are hard then Regev’s encryption scheme is secure!
Reduction inherently quantum; relies on the QFT

Exponential Speedups from the
Quantum Fourier Transform

Simon; Shor Regev’s
reduction

Chen-Liu-
Zhandry;
Yamakawa-
Zhandry

1994 2005 2022 2024

Act I: period f Act II: building cryptogra
aa

Act III: new quantum
algorithms from Regev’s
reduction

Jordan, Shutty et al;
Chailloux-Tillich

Algorithms from Regev’s Reduction!

Algorithms from Regev’s Reduction!
• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed

by some “score function”) over linear codes g : ℤm
q → ℂ 𝒞 ⊂ ℤm

q

Algorithms from Regev’s Reduction!
• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed

by some “score function”) over linear codes g : ℤm
q → ℂ 𝒞 ⊂ ℤm

q

• Key ingredient: an algorithm for decoding noisy codewords , where and c + e c ← 𝒞⊥

Pr[e] ∝ | ̂g(e) |2

Algorithms from Regev’s Reduction!
• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed

by some “score function”) over linear codes g : ℤm
q → ℂ 𝒞 ⊂ ℤm

q

• Key ingredient: an algorithm for decoding noisy codewords , where and c + e c ← 𝒞⊥

Pr[e] ∝ | ̂g(e) |2

• Regev: assume search is hard → show that decoding is hard

Algorithms from Regev’s Reduction!
• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed

by some “score function”) over linear codes g : ℤm
q → ℂ 𝒞 ⊂ ℤm

q

• Key ingredient: an algorithm for decoding noisy codewords , where and c + e c ← 𝒞⊥

Pr[e] ∝ | ̂g(e) |2

• Regev: assume search is hard → show that decoding is hard

• Recent works flip the script! Set up so that decoding is easy → search is also easy!𝒞⊥, ̂g

Algorithms from Regev’s Reduction!
• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed

by some “score function”) over linear codes g : ℤm
q → ℂ 𝒞 ⊂ ℤm

q

• Key ingredient: an algorithm for decoding noisy codewords , where and c + e c ← 𝒞⊥

Pr[e] ∝ | ̂g(e) |2

• Regev: assume search is hard → show that decoding is hard

• Recent works flip the script! Set up so that decoding is easy → search is also easy!𝒞⊥, ̂g

• as a code from low-degree polynomials (e.g. Reed-Solomon): Yamakawa-Zhandry ‘22,
Jordan-Shutty et al ’24, Chailloux-Tillich ‘24
𝒞⊥

Algorithms from Regev’s Reduction!
• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed

by some “score function”) over linear codes g : ℤm
q → ℂ 𝒞 ⊂ ℤm

q

• Key ingredient: an algorithm for decoding noisy codewords , where and c + e c ← 𝒞⊥

Pr[e] ∝ | ̂g(e) |2

• Regev: assume search is hard → show that decoding is hard

• Recent works flip the script! Set up so that decoding is easy → search is also easy!𝒞⊥, ̂g

• as a code from low-degree polynomials (e.g. Reed-Solomon): Yamakawa-Zhandry ‘22,
Jordan-Shutty et al ’24, Chailloux-Tillich ‘24
𝒞⊥

• as a very low rate linear code: Chen-Liu-Zhandry ‘22𝒞⊥

Talk 1: Dequantising Chen-Liu-Zhandry

• Regev’s reduction: aaaaa
 a

• Key ingredient: aa a

• Regev: aaaaa

• Recent works f aaaaa

• Codes from low-degree polynomiaaaaaaa
aa

• Very low raa

g : ℤm
q → ℂ 𝒞

c + e c ← 𝒞

Pr[e] ∝ | ̂g(e) |2

𝒞

Robin Kothari (Google Quantum AI)

Polynomial Speedups for Search Problems

Grover

1996 2002

Act I: generic
quadratic speedups

Brassard-Hoyer-
Mosca-Tapp

Polynomial Speedups for Search Problems

Grover

1996 2002 2024 2025

Act I: generic
quadratic speedups

Brassard-Hoyer-
Mosca-Tapp

Act II: quartic speedups for
planted inference problems

2020

Hastings
(tensor PCA)

Schmidhuber-
O’Donnell-

Kothari-Babbush
(k-XOR)

Schmidhuber-
Zlokapa

(community
detection)

Polynomial Speedups for Search Problems

Grover

1996 2002 2024 2025

Act I: generic
quadratic speedups

Brassard-Hoyer-
Mosca-Tapp

Act II: qua
a

2020

Hastings
(tensor PCA)

Schmidhuber-
O’Donnell-

Kothari-Babbush
(k-XOR)

Schmidhuber-
Zlokapa

(community
detection)

Amplitude Amplification
Often referred to as “Grover search”

Amplitude Amplification
Often referred to as “Grover search”

• Setting: we have (copies of) a starting state
, that we want to

sanitise into

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

Amplitude Amplification
Often referred to as “Grover search”

• Setting: we have (copies of) a starting state
, that we want to

sanitise into

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

• Naive idea: measure → success probability

, so runtime is

|ϕ0⟩
sin2 θ ≈ θ2 O(1/θ2)

Amplitude Amplification
Often referred to as “Grover search”

• Setting: we have (copies of) a starting state
, that we want to

sanitise into

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

• Naive idea: measure → success probability

, so runtime is

|ϕ0⟩
sin2 θ ≈ θ2 O(1/θ2)

• Better idea: gently rotate towards by reflecting
over then

|𝗀𝗈𝗈𝖽⟩
|𝖻𝖺𝖽⟩ |ϕ0⟩

Amplitude Amplification
Often referred to as “Grover search”

• Setting: we have (copies of) a starting state
, that we want to

sanitise into

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

• Naive idea: measure → success probability

, so runtime is

|ϕ0⟩
sin2 θ ≈ θ2 O(1/θ2)

• Better idea: gently rotate towards by reflecting
over then

|𝗀𝗈𝗈𝖽⟩
|𝖻𝖺𝖽⟩ |ϕ0⟩

Amplitude Amplification
Often referred to as “Grover search”

• Setting: we have (copies of) a starting state
, that we want to

sanitise into

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

• Naive idea: measure → success probability

, so runtime is

|ϕ0⟩
sin2 θ ≈ θ2 O(1/θ2)

• Better idea: gently rotate towards by reflecting
over then

|𝗀𝗈𝗈𝖽⟩
|𝖻𝖺𝖽⟩ |ϕ0⟩

Amplitude Amplification
Often referred to as “Grover search”

• Setting: we have (copies of) a starting state
, that we want to

sanitise into

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

• Naive idea: measure → success probability

, so runtime is

|ϕ0⟩
sin2 θ ≈ θ2 O(1/θ2)

• Better idea: gently rotate towards by reflecting
over then

|𝗀𝗈𝗈𝖽⟩
|𝖻𝖺𝖽⟩ |ϕ0⟩

• Each step rotates by 2θ

Amplitude Amplification
Often referred to as “Grover search”

• Setting: we have (copies of) a starting state
, that we want to

sanitise into

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

• Naive idea: measure → success probability

, so runtime is

|ϕ0⟩
sin2 θ ≈ θ2 O(1/θ2)

• Better idea: gently rotate towards by reflecting
over then

|𝗀𝗈𝗈𝖽⟩
|𝖻𝖺𝖽⟩ |ϕ0⟩

• Each step rotates by 2θ

• Runtime is !O(1/θ)

Application: Quadratic Speedups
For your favourite NP search problem :)

Application: Quadratic Speedups
For your favourite NP search problem :)

• : superposition of accepting witnesses|𝗀𝗈𝗈𝖽⟩

• : superposition of rejecting witnesses|𝖻𝖺𝖽⟩

Application: Quadratic Speedups
For your favourite NP search problem :)

• : superposition of accepting witnesses|𝗀𝗈𝗈𝖽⟩

• : superposition of rejecting witnesses|𝖻𝖺𝖽⟩

• : uniform superposition over all strings in

 ()

|ϕ0⟩
{0,1}w θ ≈ 2−w/2

Application: Quadratic Speedups
For your favourite NP search problem :)

• : superposition of accepting witnesses|𝗀𝗈𝗈𝖽⟩

• : superposition of rejecting witnesses|𝖻𝖺𝖽⟩

• : uniform superposition over all strings in

 ()

|ϕ0⟩
{0,1}w θ ≈ 2−w/2

• Naive approach (brute force search): runtime
O(1/θ2) = O(2w)

Application: Quadratic Speedups
For your favourite NP search problem :)

• : superposition of accepting witnesses|𝗀𝗈𝗈𝖽⟩

• : superposition of rejecting witnesses|𝖻𝖺𝖽⟩

• : uniform superposition over all strings in

 ()

|ϕ0⟩
{0,1}w θ ≈ 2−w/2

• Naive approach (brute force search): runtime
O(1/θ2) = O(2w)

• Using amplitude amplification: runtime
O(1/θ) = O(2w/2)

Polynomial Speedups for Search Problems

Grover

1996 2002 2024 2025

Act I: generic
quaa

Brassard-Hoyer-
Mosca-Tapp

Act II: quartic speedups for
planted inference problems

2020

Hastings
(tensor PCA)

Schmidhuber-
O’Donnell-

Kothari-Babbush
(k-XOR)

Schmidhuber-
Zlokapa

(community
detection)

Beyond Quadratic Speedups

• : all accepting witnesses

• : all rejecting witnesses

• : uniform superposition over all strings in

 ()

• “Guiding state” paradigm: find problems
where we can select more cleverly to
ensure larger

|𝗀𝗈𝗈𝖽⟩

|𝖻𝖺𝖽⟩

|ϕ0⟩
{0,1}w θ ≈ 2−w/2

|ϕ0⟩
θ

Quartic Speedup for the k-XOR Problem
Also known as Sparse Learning Parities with Noise (Sparse LPN)

Quartic Speedup for the k-XOR Problem
Also known as Sparse Learning Parities with Noise (Sparse LPN)

• Setup:

• with nonzero entries per rowA ← 𝔽m×n
2 k = O(1)

Quartic Speedup for the k-XOR Problem
Also known as Sparse Learning Parities with Noise (Sparse LPN)

• Setup:

• with nonzero entries per rowA ← 𝔽m×n
2 k = O(1)

• , s ← 𝔽n
2 e ← sparse vector in 𝔽m

2

Quartic Speedup for the k-XOR Problem
Also known as Sparse Learning Parities with Noise (Sparse LPN)

• Setup:

• with nonzero entries per rowA ← 𝔽m×n
2 k = O(1)

• , s ← 𝔽n
2 e ← sparse vector in 𝔽m

2

• Task: given as input, infer the planted secret A, As + e s

Quartic Speedup for the k-XOR Problem
Also known as Sparse Learning Parities with Noise (Sparse LPN)

• Setup:

• with nonzero entries per rowA ← 𝔽m×n
2 k = O(1)

• , s ← 𝔽n
2 e ← sparse vector in 𝔽m

2

• Task: given as input, infer the planted secret A, As + e s

• Naive amplitude amplification (starting with generic): time|ϕ0⟩ O(2n/2)

Quartic Speedup for the k-XOR Problem
Also known as Sparse Learning Parities with Noise (Sparse LPN)

• Setup:

• with nonzero entries per rowA ← 𝔽m×n
2 k = O(1)

• , s ← 𝔽n
2 e ← sparse vector in 𝔽m

2

• Task: given as input, infer the planted secret A, As + e s

• Naive amplitude amplification (starting with generic): time|ϕ0⟩ O(2n/2)

• Idea: we can prepare a special guiding state based on such that

 → an algorithm with runtime !

|ϕ0⟩ As + e
θ ≈ O(2−n/4) O(2n/4)

• Setup:

• with nonzero entries per row

• ,

• Ta aa

• Naaafa

• Ideaaaaaa a a
a

A ← 𝔽
 k = O(1)

s ← 𝔽
 e ← sparse vector in 𝔽

A, As + e s

O(2n/2)

As + e θ ≈ O(2−n/4)
O(2n/4)

Talk 2: Dequantising the Quartic Speedup for k-XOR
William He (Carnegie Mellon University)

Next Up: Breaking Quantum Speedups
Robin Kothari (Google Quantum AI)

Next Up: Breaking Quantum Speedups
Robin Kothari (Google Quantum AI) William He (Carnegie Mellon University)

Next Up: Breaking Quantum Speedups
Robin Kothari (Google Quantum AI) William He (Carnegie Mellon University)

Thank you! Questions?

