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with  norm 1.ℓ2

A qubit is  where  and .α |0⟩ + β |1⟩ |0⟩ = (1
0), |1⟩ = (0

1) |α |2 + |β |2 = 1

Entanglement:

  cannot be written as a tensor product (  concatenation) of two qubits.
|00⟩ + |11⟩

2
≈
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There are two main operations in quantum computing.

Measurement:

On measuring state  we see  with probability |ψ⟩ = ∑
x∈0,1n

ax |x⟩ x |ax |2

Unitary evolution:

Map  where , norm-preserving & invertible linear transform|ψ⟩ → U |ψ⟩ UU† = U†U = I
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Our measure of complexity is (uniform) circuit size after picking your favorite gate set (does 
not matter due to Solovay-Kitaev theorem), mine is Toffoli ( ) + Hadamard ( ).T H

  thus  

,  

H =
1

2 (1 1
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H|0⟩ =
1

2
(|0⟩ + |1⟩) H|1⟩ =

1

2
(|0⟩ − |1⟩)

H
|0⟩ + |1⟩

2
= |0⟩

T |x, y, z⟩ = |x, y, z ⊕ (x ∧ y)⟩
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In the lab

• Google’s Willow chip demonstrated an error rate below the surface code threshold.

• Quantum computers from IBM, Quantinuum, QuEra, PsiQuantum & more already 
performing experiments and poised to scale up.

Nobel Prize in Physics this year awarded to John Clarke, Michel H. Devoret 
and John M. Martinis for "for the discovery of macroscopic quantum 
mechanical tunnelling and energy quantisation in an electric circuit.”
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In theory

New speedups!

• Verifiable Quantum Advantage without Structure (on the inputs)!

• Using a similar framework (Regev’s reduction), Decoded Quantum Interferometry for 
approximate optimization

• Quartic quantum speedups for planted inference

Where is quantum computing?
Answer: it’s an exciting time

With new caveats?
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You are here

DQI (Robin), planted inference (William)

Verifiable quantum advantage (Soumik),

Quantum MCMC (Anthony)

Characters of  (Vojtěch)Sn



Exponential Speedups from the 
Quantum Fourier Transform

Simon; Shor

1994

Act I: period finding



Exponential Speedups from the 
Quantum Fourier Transform

Simon; Shor Regev’s 
reduction

1994 2005

Act I: period finding Act II: building cryptography 
on the hardness of lattice 
problems



Exponential Speedups from the 
Quantum Fourier Transform

Simon; Shor Regev’s 
reduction

Chen-Liu-
Zhandry; 
Yamakawa-
Zhandry

1994 2005 2022 2024

Act I: period finding Act II: building cryptography 
on the hardness of lattice 
problems

Act III: new quantum 
algorithms from Regev’s 
reduction

Jordan, Shutty et al; 
Chailloux-Tillich



Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)



Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩



Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩

Quantum Fourier transform: extracts information about a quantum state’s periodicity



Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩

Quantum Fourier transform: extracts information about a quantum state’s periodicity

• Classical FT: explicitly stores  values of  , computes  in  timeN f ̂f O(N log N)



Quantum Fourier Transform
Classical Fourier transform: extracts information about a signal’s periodicity

f(x) ̂f(z)

∑
x

f(x) |x⟩ ∑
z

̂f(z) |z⟩

Quantum Fourier transform: extracts information about a quantum state’s periodicity

• Classical FT: explicitly stores  values of  , computes  in  timeN f ̂f O(N log N)

• Quantum FT: implicitly stores  in a state on  qubits, implicitly computes  in  timef log N ̂f O(log2 N)
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1.Prepare the superposition 
𝗉𝗈𝗅𝗒(T)

∑
x=1

|x⟩ | f(x)⟩

2.Measure (“condition on”) the second register → signal  

has period 

|x0⟩ + |x0 + T⟩ + |x0 + 2T⟩ + …
T

3.QFT and measure the state → recover T
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From Period Finding to Factoring
• Strictly periodic function  with unknown but exponentiaa

•  

• Theorem: caa 

• Corollaaaa

1.To fa  a

2.Period  is such tha

3.With good proba aaa

f : ℤ → ℤ T

f(x) = f(y) ⇔ x ≡ y (mod T)

T 𝗉𝗈𝗅𝗒

N f(x) = a2x mod N a

T a2T ≡ (aT)2 ≡ 1 (mod N) ⇒ N ∣ (aT − 1)(aT + 1)

gcd(aT − 1,N) N

Implication: large-scale quantum computers would break essentially all 20th century 
public-key encryption (RSA, Diffie-Hellman)! 

Cryptographic goal: find public-key encryption that is secure against quantum attackers…



Exponential Speedups from the 
Quantum Fourier Transform

Simon; Shor Regev’s 
reduction

Chen-Liu-
Zhandry; 
Yamakawa-
Zhandry

1994 2005 2022 2024

Act I: period f Act II: building cryptography 
on the hardness of lattice 
problems

Act III: new qua
a


Jordan, Shutty et al; 
Chailloux-Tillich



Fourier Convolution Theorem

FT



Fourier Convolution Theorem

FT



Fourier Convolution Theorem

FT



Fourier Convolution Theorem

FT



Regev’s Reduction
Goal: output a codeword from linear  with all entries close to 0𝒞 ⊂ ℤm

q



Regev’s Reduction
Goal: output a codeword from linear  with all entries close to 0𝒞 ⊂ ℤm

q

• Let  and  for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R



Regev’s Reduction
Goal: output a codeword from linear  with all entries close to 0𝒞 ⊂ ℤm

q



Regev’s Reduction
Goal: output a codeword from linear  with all entries close to 0𝒞 ⊂ ℤm

q

• Let  and  for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑

x∈ℤm
q

f(x)g(x) |x⟩



Regev’s Reduction
Goal: output a codeword from linear  with all entries close to 0𝒞 ⊂ ℤm

q

• Let  and  for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑

x∈ℤm
q

f(x)g(x) |x⟩

• QFT → suffices to construct the convolution of the Fourier 
transforms



Regev’s Reduction
Goal: output a codeword from linear  with all entries close to 0𝒞 ⊂ ℤm

q

• Let  and  for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑

x∈ℤm
q

f(x)g(x) |x⟩

• QFT → suffices to construct the convolution of the Fourier 
transforms

• ̂f(z) ∝ 𝕀[z ∈ 𝒞⊥]



Regev’s Reduction
Goal: output a codeword from linear  with all entries close to 0𝒞 ⊂ ℤm

q

• Let  and  for suitable f(x) = 𝕀[x ∈ 𝒞] g(x) = exp(−π∥x∥2/R2) R

•
Suffices to construct the state ∑
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transforms

• ̂f(z) ∝ 𝕀[z ∈ 𝒞⊥]

• ̂g(z) ∝ exp(−πR2∥z∥2/q2)
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• Algorithm:

1.Separately prepare  and ∑
c∈𝒞⊥

|c⟩ ∑
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3.We now need a decoder to recover  from  to “erase” these registersc, e c + e
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Regev’s Reduction: Summary
Cryptography assuming the hardness of lattice problems

• Regev’s encryption scheme is secure, unless there exists an algorithm for decoding 
 for  and  of low  normc + e ↦ c, e c ∈ 𝒞⊥ e ℓ2

• Given such an algorithm, we could combine it with the QFT to output a codeword in  of 
low  norm

𝒞
ℓ2

• Classical reductions → this would allow us to solve lattice problems (e.g. approximate 
shortest vector)

Running this backwards: if lattice problems are hard then Regev’s encryption scheme is secure! 
Reduction inherently quantum; relies on the QFT
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Algorithms from Regev’s Reduction!
• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed 
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• Regev’s reduction: a framework for quantumly solving search/optimisation problems (governed 

by some “score function” ) over linear codes g : ℤm
q → ℂ 𝒞 ⊂ ℤm

q

• Key ingredient: an algorithm for decoding noisy codewords , where  and c + e c ← 𝒞⊥

Pr[e] ∝ | ̂g(e) |2

• Regev: assume search is hard → show that decoding is hard

• Recent works flip the script! Set up  so that decoding is easy → search is also easy!𝒞⊥, ̂g

•  as a code from low-degree polynomials (e.g. Reed-Solomon): Yamakawa-Zhandry ‘22, 
Jordan-Shutty et al ’24, Chailloux-Tillich ‘24
𝒞⊥

•  as a very low rate linear code: Chen-Liu-Zhandry ‘22𝒞⊥



Talk 1: Dequantising Chen-Liu-Zhandry

• Regev’s reduction: aaaaa
 a

• Key ingredient: aa  a


• Regev: aaaaa

• Recent works f aaaaa

• Codes from low-degree polynomiaaaaaaa
aa

• Very low raa

g : ℤm
q → ℂ 𝒞 



c + e c ← 𝒞

Pr[e] ∝ | ̂g(e) |2

𝒞

Robin Kothari (Google Quantum AI)
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• Setting: we have (copies of) a starting state 
, that we want to 

sanitise into 

|ϕ0⟩ = cos θ |𝖻𝖺𝖽⟩ + sin θ |𝗀𝗈𝗈𝖽⟩
|𝗀𝗈𝗈𝖽⟩

• Naive idea: measure  → success probability 

, so runtime is 

|ϕ0⟩
sin2 θ ≈ θ2 O(1/θ2)

• Better idea: gently rotate towards  by reflecting 
over  then 

|𝗀𝗈𝗈𝖽⟩
|𝖻𝖺𝖽⟩ |ϕ0⟩

• Each step rotates by 2θ

• Runtime is !O(1/θ)
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Application: Quadratic Speedups
For your favourite NP search problem :)

• : superposition of accepting witnesses|𝗀𝗈𝗈𝖽⟩

• : superposition of rejecting witnesses|𝖻𝖺𝖽⟩

• : uniform superposition over all strings in 

 ( )

|ϕ0⟩
{0,1}w θ ≈ 2−w/2

• Naive approach (brute force search): runtime 
O(1/θ2) = O(2w)

• Using amplitude amplification: runtime 
O(1/θ) = O(2w/2)
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Beyond Quadratic Speedups

• : all accepting witnesses 

• : all rejecting witnesses 

• : uniform superposition over all strings in 

 ( ) 

• “Guiding state” paradigm: find problems 
where we can select  more cleverly to 
ensure larger 

|𝗀𝗈𝗈𝖽⟩

|𝖻𝖺𝖽⟩

|ϕ0⟩
{0,1}w θ ≈ 2−w/2

|ϕ0⟩
θ
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Quartic Speedup for the k-XOR Problem
Also known as Sparse Learning Parities with Noise (Sparse LPN)

• Setup:

•  with  nonzero entries per rowA ← 𝔽m×n
2 k = O(1)

• , s ← 𝔽n
2 e ← sparse vector in 𝔽m

2

• Task: given  as input, infer the planted secret A, As + e s

• Naive amplitude amplification (starting with generic ):  time|ϕ0⟩ O(2n/2)

• Idea: we can prepare a special guiding state  based on  such that 

 → an algorithm with runtime !

|ϕ0⟩ As + e
θ ≈ O(2−n/4) O(2n/4)



• Setup: 

•  with  nonzero entries per row 

• ,  

• Ta aa

• Naaafa

• Ideaaaaaa a a
a

A ← 𝔽
 k = O(1)

s ← 𝔽
 e ← sparse vector in 𝔽



A, As + e s

O(2n/2)

As + e θ ≈ O(2−n/4)
O(2n/4)

Talk 2: Dequantising the Quartic Speedup for k-XOR
William He (Carnegie Mellon University)
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Thank you! Questions?


